ERRATUM

Atomic Oxygen Induced Structural Changes in Polyphosphazene Films and Coatings

LARRY L. FEWELL

NASA Ames Research Center, Moffett Field, California 94035

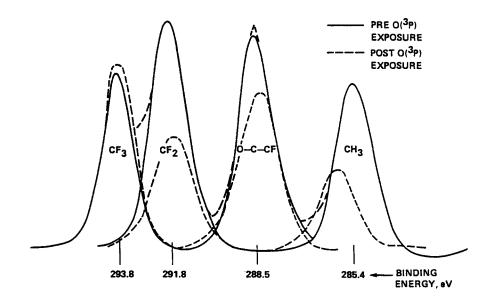
[article in J. Appl. Polym. Sci., 41, 391 (1990)]

Page 396: Table I should read poly(octa-fluoropentoxy-trifluoroethoxy) phosphazene coatings.

Page 397, Figure 5; ESCA C_{1s} Binding Energies (B.E.) read as follows: 279.7 eV (CR or CH₃), 283.7 eV (O-C-CF), 287.0 eV (CF₂), and 288.9 eV (CF₃). These reported B.E. are uncorrected for sample charging effects.

Page 397; Figure 5; Corrected C_{1s} B.E. should read as follows: 285.1 eV (CR or CH₃), 288.5 eV (O-C-CF), 291.8 eV (CF₂), and 293.7 eV (CF₃).

Note: The ESCA wide band spectrum of our poly(fluoroalkoxy phosphazene) film had a strong consistent C_{1s} or "hydrocarbon" signal due to adventitious silicon (SiO₂ and SiO (CH₃)₂). The film exhibited a strong fluorine reference signal due to CF₂ units in the pendant group. The presence of


these two signals allowed us to create a reference binding energy (B.E.). By assigning the C_{1s} signal from the substrate to be at a B.E. of 284.6 eV (*Phi Handbook*), we determined the B.E. of the fluorine from the sample. After the sample was washed in freen, the B.E. of the fluorine signal determined from the sample prior to freen washing was used as a reference. B.E. corrections were made based on the F_{1s} signal. Binding energies were in agreement with CF_2 binding energies listed in the *Phi* Handbook of X-Ray Photoelectron Spectroscopy (p. 44) listed at a B.E. of 689.0 eV.

Page 402: Tables II, line 11, and Table III, line 8, read:

poly(octafluoropentoxy)

phosphazene coatings They should read:

poly (octafluoropentoxy-trifluoroethoxy) phosphazene coatings

Journal of Applied Polymer Science, Vol. 42, 2627 (1991) © 1991 John Wiley & Sons, Inc. CCC 0021-8995/91/092627-01\$04.00